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Parametric resonance of rotating spiral waves under broken rotational symmetry
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Numerical simulations and analytical arguments for the resonant behavior of periodically perturbed rotating
spiral waves in systems with broken rotational symmetry are presented. Resonance, i.e., the displacement of
the rotation center along a straight line, appears always if the perturbed rotation does not match the symmetry
given by the active medium supporting the wave. For the Z, case, simulations in a simple two-component
reaction-diffusion model have been carried out. For the case of arbitrary rotational symmetries Z,;, a general

resonance condition is derived.

PACS number(s): 05.70.Ln, 82.65.—i, 82.20.Wt

Pattern formation in nonequilibrium systems has been ob-
served in many physical, chemical, and biological systems
[1]. Among the most prominent of such patterns are rotating
waves (in two dimensions: spirals), which have been re-
ported in social amoebae [2], chicken retina [3], oocytes cy-
toplasm [4], and cardiac tissue [5] as well as in the Belousov-
Zhabotinsky (BZ) solution [6] and in catalytic surface
reactions [7]. As a common explanational framework the
concept of active media is used [8], in the above cases speci-
fied by appropriate reaction-diffusion models of similar basic
dynamical properties [9,10].

Up to now, such models have mostly been chosen to be
isotropic or simply anisotropic, i.e., the quotient of the diffu-
sion constants in orthogonal directions is identical for all
species. While this simple anisotropy can easily be removed
by rescaling the spatial coordinates (and hence is trivial),
new phenomena may occur if such rescaling is impossible
[11]: This complex anisotropy occurs naturally in media
where the anisotropy depends on the state of the system,
giving rise to a dynamical anisotropy that varies along the
profile of a chemical wave. Such an effect can be found in
surface reactions, where diffusion coefficients depend on ad-
sorbate coverages and on surface structure [12], and in car-
diac tissue [13]. Thus, even if only one species is diffusing,
state-dependent anisotropy of diffusion may lead to qualita-
tively new phenomena.

As an interesting consequence for rotating spiral waves,
the complex anisotropy of the medium is breaking the full
rotational symmetry present in isotropic systems (or—
despite the scaling of coordinates—in simply anisotropic
systems). While the resulting effects on autonomous waves
have been described elsewhere [14,15], we focus in this pa-
per on the importance of rotational symmetry for the reso-
nance behavior of perturbed spirals.

In experiment, external periodic perturbations have been
applied in the BZ reaction by electric field [16], light [17—
19], or stretching the gel [20], and in surface reactions by
varying the temperature [21]. Both stretching the gel and
applying an electric field was done along one Cartesian di-
rection only and the electric field broke not only the rota-
tional but also the reflectional symmetry of mere diffusion.
In the other experiments, a control parameter (light or
temperature—these parameters both control the rotation of a
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spiral in a similar way) was isotropically varied. Under these
conditions, several resonances have been found which could
be successfully explained with the assumption of an isotropic
medium [21-23]. While this is naturally the case with ho-
mogeneous systems like the BZ reaction, the assumption of
isotropy does not necessarily hold in heterogeneous cataly-
sis, i.e., on surfaces. We will briefly summarize the theoreti-
cal results for isotropic media and then turn to anisotropic-
media. For the sake of simplicity, only isotropic perturb-
ations are treated. As another restriction, only rigidly rotating
waves are discussed and not the more complex types of ro-
tation, known as meandering or hypermeandering [10,24],
where more than one intrinsic frequency governs the spiral
dynamics and the perturbation can phase-lock to the addi-
tional frequencies as shown in the light-sensitive BZ reaction
[18,19].

For rotating waves, resonance corresponds to a net drift of
the center of rotation along a straight line. In isotropic media,
it has been shown by analytical argument and numerical
simulation that in order to obtain this resonance the rotation
frequency wq has to be an integer multiple of the perturba-
tion frequency w [23]. Nearby, the spiral undergoes a net
displacement along a circle with a radius inversely propor-
tional to the difference to the full resonant frequency. Irratio-
nal ratios w /w result in nonclosing tip paths. For noninteger
rational values of wq,/w, the contributions of the perturba-
tion at different angles cancel themselves, resulting in closed
trajectories of the spiral tip (i.e., the inner end of the spiral
arm; see below). In the vicinity of the 1:1 resonance, the
resulting spiral motion resembles an unperturbed meandering
[8].

If the full rotational symmetry of an isotropic system is
broken, additional resonances at rational w,/w are possible,
whenever a certain condition involving this ratio and the
remaining symmetry is fulfilled. We will demonstrate this
first in numerical simulations of a particular active medium
for a special case of rotational symmetry, and will then ana-
lytically derive the resonance condition for systems with ar-
bitrary rotational symmetry.

Numerical studies of anisotropic resonance behavior were
performed with a reaction-diffusion model that was devel-
oped for a catalytic surface reaction, namely the CO oxida-
tion on Pt(110) single-crystal surfaces [23]:
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FIG. 1. Snapshot of a drifting spiral in model (1) for equal
perturbation and rotation frequencies. The unperturbed spiral was
located in the center of the medium. We monitor the value of u after
4.6 periods of the perturbation (with gray denoting higher values)
and the trajectory of the spiral tip under perturbation (black line).
The parameters are a =0.84, b=0.19, £ =0.025; modulation ampli-
tude 5% in b, period 27/w="7.0 time units; semi-implicit integra-
tion (see [25] with d¢=0.0073, grid size 384X 384 corresponding
to 75X 75 spatial units.

du=—¢ u(u—1)[u—(v+b)/al+V[D(v)Vul,

(1)
0, u<1/3
du=f(u)—v with f(u)=4 1—6.75u(u—1)? else
1, u>1.

These equations are similar to a model proposed by Barkley
[25], allowing oscillatory, excitable or bistable local kinetics
depending on the number of stable fixed points [23]. In the
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above equations, the fast activator variable u denotes the
adsorbate coverage of the surface (changing rapidly due to
adsorption and reaction processes), while the slow inhibitor
variable v stands for the degree of surface reconstruction,
influencing the reactivity of the surface and the diffusion of
u. We chose the diffusion to be

D.(v)=1+v/2, D,(v)=1-v/2 2)
This nonstandard diffusion term leads to complex anisotropy
of the medium, which is no longer identical under every
rotation but only under turns of 180° and cannot be scaled
out.

Perturbations were applied by varying the parameter b,
which determines the excitability threshold in Egs. (1) and is
related to the temperature of the catalyst, but the other pa-
rameters a and & wou } 1o equally well. We restrict our-
selves to the excitable regicn, but spirals in the oscillatory or
bistable region are expected to show identical resonant be-
havior, since in all regions the parameters influence the rota-
tion period monotonously [23]. Consequently the occurrence
of resonances depends on the symmetry only. In Fig. 1, a
spiral is shown after several rotations, together with the tra-
jectory of the spiral tip, for a perturbation frequency equal to
its rotation frequency. The spiral arm is distorted by the Dop-
pler effect of the spiral’s net displacement (drift) and by the
anisotropic wave propagation in the medium. For the reso-
nances, we further concentrate on the tip trajectories only.
The tip is the inner end of the spiral arm, its location being
defined as the intersection of isoconcentration lines of u and
v [for Egs. (1), u=0.5 and v =a/2— b were used]. The loopy
trajectory of the tip consists of rotation and translation of the
wave. Resonances appear as a net drift of the rotating wave
along a straight line, i.e., the tip trajectory exhibits a loopy
line with a straight net translation (cf. Fig. 1).

The application of different perturbation frequencies is
shown in Fig. 2. Resonances occur for every odd integer m,
when wy/w=n/m, and arbitrary integer n, while even m
result in closed paths of the spiral tip. (Without loss of gen-
erality it can be assumed that n,m are coprime natural num-
bers.)

unperturbed

FIG. 2. Tip trajectories for dif-
3:2 ] ferent ratios wy/w=n:m of rota-
tion frequency w, and perturba-
tion frequency w in the model,
which has 180°-rotational symme-
try. Therefore (a) resonance oc-
curs for all m odd, and (b) no
resonance is found for m even.
Other parameters as Fig. 1.
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Why not resonance for all rational ratios? It seems that the
even numbers of m do not cause a resonance because they
match the rotational symmetry of 180°. We will now gener-
alize this intuitive argument and give a simple proof of the
relationship between the rotational symmetry and the occur-
rence of resonance.

Consider the general case of a system with Z; rotational
symmetry, 360°/d being the smallest angle of symmetrical
rotation. The appropriate symmetry group for the isotropic
case is E,, the set of all reflections as well as infinitesimal
translation and rotation on a plane [26]. When the rotational
symmetry is broken into finite rotations, the translational
symmetry remains intact. The possible axes of symmetrical
reflections are determined by the rotational symmetry. Keep-
ing this in mind, it is sufficient to talk about the rotational
symmetries. The numerical results for the d=2 case suggest
the following generalization of the resonance condition.

Generalization. Given a rigidly rotating wave in a two-
dimensional medium with Z,; rotational symmetry. An isotro-
pic perturbation of frequency w which has a rational relation
to the autonomous frequency wg, i.e., wy/w=n/m (with
n,m coprime integers), gives rise to resonance, if and only if
m and d are coprime. For all other rational values of n/m,
closed trajectories of the wave tip are obtained.

In order to prove this statement, we first consider the sym-
metry of the unperturbed rotating wave. In a polar coordinate
frame let Ry(¢) and ¢o(¢) denote the time-dependent radius
and angle coordinates respectively of the unperturbed tip.
Obviously, the Z,; symmetry of the underlying medium im-
poses the following restrictions on the motion of the tip:

Ro(t+Ty/d)=R(1), (3a)
bo(t+Ty/d)=po(t)+2m/d, (3b)

where To=2m/wy. Let co(¢) denote the time-dependent
complex velocity of the unperturbed tip. Then we see from
Egs. (3a) and (3b) that c(¢) is a Ty-periodic function satis-
fying the following symmetry requirement:

colt+ To/d)=ei2"/dcb(t). (3c)

Being T-periodic, cy(?) can be expanded as a Fourier series
with condition (3c) eliminating certain coefficients, so that
one obtains

3]

co(t)= 2 cpelrdtien, @)

Now let us assume that an isotropic periodic perturbation of
the medium with frequency w=m/nwy, modulates the tip
velocity in the following way:

c(t)=(1+8)co(2), ®

where c(¢) is the tip velocity under perturbation and & is an
w-periodic function that hence allows the following Fourier
expansion:

5= > be s, (6)

§=—0
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Combining Egs. (4)—(6) results in
C(t)=C0(t)+ 2 2 Crbsei(rd+1—sm/n)wot' (7)
5 S

The net displacement AR of the tip after time nT, is given
by

nTy Ty
AR:J'O c(t)dt=”j0 [c(nt)—co(nt)]dt, ®)

where the latter expression is obtained by linear substitution
in the integral and the fact that the T'y-periodic unperturbed
motion does not contribute to AR. Combining Egs. (7) and
(8) we obtain

=3 S

yF=—0 §=—00

T
Crbsf Oei[(rd+1)n—sm]w0tdt' (9)
0

The integrals in Eq. (9) provide nonvanishing contributions
to AR only if the following condition holds:

A r,s €Z: sm=(rd+1)n, (10)

where Z denotes the set of integer numbers. It is immediately
clear that for m =1 condition (10) can always be fulfilled by
fixing r and n and choosing s=(rd+1)n. In general, in
order to fulfill Eq. (1) with m and n having no common
factor, s must be a multiple of n. Hence, fulfilling Eq. (10)
amounts to finding a linear combination of m and d in Z
equal to one (sm—rd=1), which can be solved—as estab-
lished in basic number theoretical literature [27]—if and
only if the greatest common factor of m and d is 1. Thus one
gets nonzero contributions to AR only if m and d are
coprime natural numbers, and closed tip trajectories other-
wise (end of proof).

Finally, it should be mentioned that for intrinsic anisot-
ropy in simple reaction-diffusion systems the invariance of
the diffusion operator under inversion of coordinates requires
d to be an even number. However, an odd number of d could
be obtained by introducing anisotropy in a simple isotropic
system through the application of external forces, e.g., elec-
trostatic fields, or in more complex systems with spatial cou-
pling different from mere diffusion.

To summarize, we presented numerical evidence and ana-
lytical arguments for a resonance (drift) condition in the case
of isotropically perturbed rotating waves in an anisotropic
medium. Simply speaking, more and more resonances occur
when lowering the rotational symmetry of the medium, i.e.,
in the absence of any rotation axes (Z;) all rational values of
wo/w cause resonance, while for full rotational symmetry
(Z.) only the resonances with natural wg/w persist. In prin-
ciple, the arguments given can be extended to rotating waves
in other media by taking the respective symmetry into ac-
count.
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FIG. 1. Snapshot of a drifting spiral in model (1) for equal
perturbation and rotation frequencies. The unperturbed spiral was
located in the center of the medium. We monitor the value of u after
4.6 periods of the perturbation (with gray denoting higher values)
and the trajectory of the spiral tip under perturbation (black line).
The parameters are a=0.84, b=0.19, £ =0.025; modulation ampli-
tude 5% in b, period 27/w=7.0 time units; semi-implicit integra-
tion (see [25] with dr=0.0073, grid size 384 X 384 corresponding
to 75X 75 spatial units.



